MESOSCALE CLOUD STATE ESTIMATION FROM VISIBLE AND INFRARED SATELLITE RADIANCES

Tomislava Vukicevic

in collaboration with

T. Greenwald*, M. Zupanski, D. Zupanski,

T. Vonder Haar, A. Jones and K. Eis

Cooperative Institute for Research in the Atmosphere
CG/AR sponsored by DoD
Colorado State University
*SSEC/CIMMS, University of Maryland

OUTLINE

- Motivation and problem statement
- Analysis of information content of satellite remote sensing measurements in the cloud state estimation
- 4DVAR research algorithm
- 4DVAR data assimilation experiments
- Conclusions

WHY MESOSCALE CLOUD STATE ESTIMATION?

- High resolution atmospheric state analysis under all weather conditions
- More accurate analysis of other environmental conditions dependent on weather
- Weather forecast initialization and verification

Mesoscale weather analyses currently imply regional domains

Motivation similar for global systems EXCERPT FROM

Recent developments at ECMWF

by M. Miller:

Obvious importance of clouds and precipitation

Satellite data represent 95% of the data ingested into the ECMWF analysis system, but most of the satellite radiances (about 75%) are not used because they are diagnosed as cloud- or rain-affected

Assimilation of moist variables into NWPs challenging due to the wide range of spatial and temporal scales

State-of-the-art global NWP models describe cloud and precipitation with a reasonable degree of realism

MESOSCALE CLOUD STATE ESTIMATION PROBLEM

Cloud state definition

3D spatially distributed cloud hydrometeors with microphysical properties

Approach to resolution

 Assimilation of cloud sensitive remote sensing measurements on mesoscales into a cloud resolving forecast model

Methodology

- 4D assimilation techniques
- Research data assimilation algorithm to test information content of remote sensing observations of clouds in 4D
- Diagnostic studies of error characteristics specific to the cloud estimation

 BACIMO2003

CLOUD AND PRECIPITATION SENSITIVE REMOTE SENSING

Satellite

regional to global coverage resolution approaching mesoscales

Radar

selected regional coverage high resolution

Example from global scale systems / from Miller (ECMWF)

New Observing-System Experiments

Northern hemisphere

Southern hemisphere

Verification against control analysis

Our research on cloud state estimation from satellite remote sensing

Start

- Observations: VIS and IR GOES imager radiances
- Mesoscale forecast model: CSU Regional Atmospheric Modeling System (RAMS) with explicit cloud prediction (7 types of hydrometeors)
- Assimilation method: Nonlinear least square estimation solved by 4D variational technique (4DVAR)

Regional Atmospheric Modeling and Data Assimilation System RAMDAS

VIS and IR observational operator

4DVAR DATA ASSIMILATION EXPERIMENTS

Case: PBL continental stratus in Southern US, May 2 1996

Model configuration:

- 51 levels variable vertical grid
- 25 km horizontal grid span up by 5 km nested
- forecast
- liquid cloud microphysics

Experiments:

- 1 grid box observations: VIS and IR GOES imager
- All IR 10.7 µm measurements over low level cloud region

 BACIMO2003

Cloud forecast verification in GOES imager space liquid continental stratus

Equivalent Blackbody Temperature (K)

Equivalent Blackbody Temperature (K)

BACIMO2003

VIS and IR information content analysis: sensitivity of measurement to cloud mixing ratio Liquid stratus case

Summary of VIS and IR assimilation results

Assumed error variances: 1.0 for Tb and 0.1 for reflectance

Key result: Assimilation converged successfully to small mean forecast error in the cloud domain

Impact of GOES IR 10.7µm on cloud in assimilation

What happened in 3D?

Vertical response at a location with negative cloud cover error

Warming and drying in inversion layer

Sensitivity of cost function diminishes as cloud is removed

What happened in 3D?

Horizontal response within a layer near the cloud top

Total water mixing ratio

Potential temperature

Key result

Cloud is enhanced/diminished where there is cooling/heating associated with moistening/drying

What happened in 3D?

Dynamical response

Key results

PBL mixing enhanced in adjustment to the observations
Influence of horizontal advection is negligible

BACIMO2003

3h forecast after assimilation

Key results

New forecast slightly better where cloud cover is correct

(-0.5 vs 0.1 K Tb error)

Neither forecast captures fast dissipation in south-west Texas due to the LBC error

CONCLUSIONS

- Measurable positive impact of VIS and IR measurements
- Plausible thermodynamic response
- Sensitivity of the cost function in model clear columns is negligible, <u>as expected</u>
- Strongly suggested need to incorporate other remote sensing or in situ measurements on mesoscales to further improve analysis of the cloud environment
- Demonstrated success with 'cold start' assimilation and relatively crude grid resolution encourages further research toward cycled and higher resolution cloud 4DDA

Extra slides

260 280

260 280 Forecast GOES-9

0.6 8.0

280 300

280

Reflectance

Cloud forecast verification in GOES imager space

warm continental stratus

Equivalent Blackbody Temperature (K)

Equivalent Blackbody Temperature (K)

VIS and IR information content analysis continued Mesoscale convective system case

Visible

Sensitivity to multiple cloud layers

Near IR

IR

VIS and IR Satellite Observational Operator Linearity test

Key result

VIS and IR OO is quasi linear for wide range of cloud mixing ration perturbations

Evolution of forecast skill for northern and southern hemispheres

Anomaly correlation of 500hPa height forecasts

Annual-mean r.m.s. errors against analyses from WMO scores

From Miller/ECMWF

BACIMO2003

Satellite Instruments and their Information Content

Wavelength

Primary Information Content

Platform	Instrument	Visible	IR	Microwave	Temperature	Humidity	Cloud	Precipitation	Surface
DMSP	SSM/I SSM/T SSM/T-2			1	0	0	0	0	0
	OLS	√	√	٧		0	0		\circ
NOAA	AMSU-A			1	0	0	0	0	0
	AMSU-B HIRS/3		1	٧	0	0	0	0	0
	AVHRR	√	1				0		0
GOES	Imager Sounder	√ √	√ √		0	0	0		0
Meteosat	Imager	1	1			0	0		0
GMS	Imager	1	1			0	0		0
Terra	MODIS	1	1		0	0	0		0
TRMM	TMI VIRS PR	1	1	√ √		0	00	0	0
QuikSCAT	Scatterometer			1					0
Aqua	AMSR-E AMSU HSB			√ √ √	0	0000	0	0	0
	AIRS MODIS	√	1		0	0	0		0
ADEOS-II	AMSR GLI SeaWinds	1	1	1	0	0	00	0	000
DMSP	SSMIS OLS	V	√	V	0	0	0	0	0
Windsat	Polarimetric radiometer			1					0

Curren

Near-future